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Abstract

Spectral approximation based on Hermite-Fourier expansion of the Vlasov-Poisson model for a collisionless plasma in the electro-
static limit is provided by adding high-order artificial collision operators of Lenard-Bernstein type. These differential operators are
suitably designed in order to preserve the physically-meaningful invariants (number of particles, momentum, energy). In view of
time-discretization, stability results in appropriate norms are presented. In this study, necessary conditions link the magnitude of
the artificial collision term, the number of spectral modes of the discretization, as well as the time-step. The analysis, carried out
in full for the Hermite discretization of a simple linear problem in one-dimension, is then partly extended to cover the complete
nonlinear Vlasov-Poisson model.
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1. Introduction

The numerical approximation of physical systems described by kinetic equations is a formidable challenge [34].
These equations are, indeed, highly dimensional, strongly non-linear, and describe phenomena that are extremely
multi-scale, as the behavior of the physical system at macroscopic scales is influenced by the microscopic particle
dynamics. In plasma physics, scale separation occurs at the kinetic level because of the difference in mass between
electrons and ions [18]. Other important applications that may be worth mentioning can be found in fluid dynamics,
atmospheric and climate research [1], and multidimensional radiative transfer problems [25]. In all these fields, per-
forming macroscale simulations that accurately include effects from the underlying microscale particle dynamics is
still an open challenge.

In this work, we focus on the numerical approximation of the kinetics equation describing the behavior of elec-
trically charged particle in a noncollisional plasmas, also known as the Vlasov equation. Such an equation governs
the time evolution of the distribution function of plasma particles, through the action of an electromagnetic field gen-
erated by the charge and current densities of the same moving particles. The resulting coupling through Maxwell’s
equations (or Poisson’s equation, in the electrostatic limit) is highly nonlinear, since the electromagnetic sources in
such equations, i.e. charge and current densities, depend on the distribution functions themselves [15].



In his historical and pioneering paper [16], H. Grad proposed to expand the velocity distribution function of a
noncollisional plasma at equilibrium using Hermite functions. Hermite functions are Hermite polynomials multiplied
by the Gaussian exponential function w(v) = exp(−v2), where v is the velocity in 1D of the plasma particles.
Such a weight w is indeed the velocity distribution of a plasma at equilibrium and is a steady state solution of the
Vlasov equation. Since a plasma at equilibrium is actually described by w, we expect that only a few modes may be
needed to describe a plasma in a perturbed state still close to equilibrium. Moreover, it has to be pointed out that,
when the solution of the Vlasov equation is expanded by Hermite basis functions, the equations for the first three
coefficients correspond to the conservation laws for the number of particles, momentum and energy. These three
quantities characterize the macroscopic (i.e., fluid-like) behavior of a plasma. The successive terms of the Hermite
expansion introduce kinetics effects in a very straightforward manner, thus providing a strategy to realize the coupling
between micro- and macro-physics. The micro/macro coupling is an intrinsic and specific feature of the Hermite
approach, which cannot be replicated if we choose a different set of approximating functions. For the above reasons,
Hermite functions constitute an “ideal” basis for solving numerically Vlasov-based models of noncollisional plasmas.

Since late sixties throughout the last five decades, Grad’s idea has extensively been applied to the development of
plasma simulators [2, 14, 21, 19, 37, 6, 35], where the Hermite basis for velocity is coupled with the Fourier basis
in space. A renewed interest has been manifested in very recent years towards these approximation methods [4, 5,
9, 10], as the excellent properties mentioned above make them the natural numerical framework of high resolution
and computationally efficient solvers [42, 36]. Moreover, the accuracy of Hermite’s approximations can be improved
by order of magnitudes by introducing a translation factor, u, and a scaling factor, α, in the so-called generalized
weight [40]: w(v) = exp

(
− ((v − u)/α)2

)
. Empirical evidence that a convenient choice of the scaling factor α can

improve the accuracy in Hermite discretizations of the Vlasov equation was shown in [37]. Generalized basis functions
of Hermite type have been investigated for solving time-dependent parabolic problems in [26] and, more recently,
in [11] for the approximation of the Vlasov phase space. An adaptive strategy is currently under investigation [33],
where both u and α may change depending on how the plasma evolves in time during a numerical simulation. Such
an adaptive strategy is sought to improve the computational efficiency by using only a few spectral modes where
a macroscopic description of the system is appropriate, and adding more modes where the microscopic physics is
important [41]. This aspect offers the possibility of selecting the most meaningful number of spectral modes for a
given resolution in phase space.

The strong point in favour of spectral schemes is that they can be extremely accurate because of the excellent
convergence rate [8, 7, 3, 13, 12, 38]. Stability of spectral techniques for Vlasov-based systems can be ensured in
different ways. For example, if we assume that the velocity domain remains bounded during simulation, we can
use Legendre polynomials and enforce stability through a penalty technique acting on boundary terms [30, 31]. A
common way to enforce numerical stability is by adding a suitable artificial dissipation to the right-hand side. Such
a modification must not destroy the conservation properties of the original method, and this is a major concern in
the case of Vlasov equation. Discrete schemes preserving basic quantities are available in spectral discretizations in
combination to Fourier expansions [19, 37, 5, 9], or the discontinuous Galerkin method [29, 28, 32, 22, 23].

As specified above, in the spectral discretization of the Vlasov equation using Hermite basis functions, the con-
servation of number of particles, momentum and energy, is strictly related to the lowest-order modes. These can be
heavily modified during the evolution by adding numerical dissipation in a straightforward fashion. A possible way
to maintain a perfect preservation of low modes is to design the dissipation terms through Lenard-Bernstein-like op-
erators of order 2k, with k ≥ 1 integer [24]. In the new formulation, the 1D − 1D Vlasov-Poisson system takes the
form

∂f

∂t
+ v

∂f

∂x
− E∂f

∂v
= −(−1)kνL̃(k)L(k)f in Ω× [0, T ], (1)

∂E

∂x
= 1−

∫
Ωv

f dv in Ω× [0, T ], (2)

where f = f(x, v, t) is the distribution function, E = E(x, t) the electric field, L̃(k) and L(k) are the Lenard-
Bernstein-like operators only acting onto the velocity variable v. The positive parameter ν is a sort of artificial viscosity
used to tune the action of the differential operator L̃(k)L(k) on f . This kind of dissipation was proposed in previous
works to control the filamentation process based on an empirical argument [4, 5, 9, 10, 30, 31].
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There are of course other techniques to add viscosity. The Spectral Vanishing Viscosity (SVV) method was intro-
duced at the end of the ’80 and further investigated in the ’90 [39, 27, 20, 17], to solve scalar conservation laws and
hyperbolic problems using spectral methods. In [39] SVV is considered in the Fourier spectral discretization of a pe-
riodic conservation law, whereas the non-periodic case is treated in [27] through Legendre expansion. This approach
makes it possible to preserve spectral accuracy and, at the same time, guarantee stability even in situations developing
shocks. The trick is to introduce artificial viscosity only at the highest frequencies, according to special rules. For a
given N , a way to represent the diffusion operator is to construct some coefficients Qk such that{

Qk = 0 if k ≤ mN

0 < Qk ≤ 1 if mN < k ≤ N,

where mN =
√
N is the spectral viscosity activation mode. If the function φ admits an expansion of the type φ(x) =∑∞

k=0 CkPk(x), where Pk is the k-th Legendre polynomial, the SVV operator QN is defined in the following way

(
QNφ

)
(x) =

N∑
k=0

QkCk Pk(x).

Correspondingly, in the framework of collocation techniques, the conservation law and its polynomial approximation
assume respectively the forms

∂u

∂t
+
∂f(u)

∂x
= 0,

∂uN

∂t
+
∂IN

(
f(uN )

)
∂x

= εN
∂

∂x

[
QN

(
∂uN

∂x

)]
,

where IN is a suitable interpolation operator and the coefficient εN = O(1/N) is the spectral viscosity amplitude.
As we said, a strict peculiarity of the AW Hermite approximations is the possibility to preserve, perfectly unchanged,
a certain number of moments associated with the lower modes. Unfortunately, discretization techniques based on
Hermite functions are intrinsically unstable, so that the schemes require a mandatory mechanism of dissipation that
should leave the basic modes untouched. The SVV approach could be a viable alternative to the combined Lenard-
Bernstein operators. Contrary to what happens for the formulation (1), that has been successfully experimented in
applications [4, 5, 9, 10, 30, 31], as far as we know, there are no examples of implementation of the SVV method in
the framework of Hermite expansions for the Vlasov equation. The new analysis would be certainly interesting, but,
at the moments, out of the scopes of this paper. The topic could be the subject of possible future work.

Commonly, there are two different choices of Hermite functions (i.e., Hermite polynomials multiplied by a suitable
Gaussian function). The classical polynomial orthogonality weighted by w(v) = e−v

2

leads to the so called Asymmet-
rically Weighted (AW) case, whereas the orthogonality of Hermite functions, each one weighted by w(v) = e−v

2/2,
leads to the Symmetrically Weighted (SW) case. This terminology will be better clarified in the coming sections.
Accordingly, we have two different definitions of the Lenard-Bernstein differential operators L̃(k) and L(k). In both
cases, the basis elements are eigenfunctions of the combined operator. The crucial point is that the eigenvalues corre-
sponding to the first k − 1 modes are zero. This says that the action of the operators does not modify such modes, or,
in other words, that L̃(k)L(k) induces dissipation only for the modes grater or equal to k. Despite these common prop-
erties, the two discrete formulations resulting from using AW and SW Hermite functions are substantially different.
In fact, concerning time-discretization, it turns out that the SW formulation can easily be proven to be algebraically
stable with or without the diffusive term [19, 37], whereas for the AW formulation the issue is far more delicate. More
precisely, the stability result in the L2(Ω) norm that we are interested to investigate reads as

d

dt

∣∣∣∣f(·, ·, t)
∣∣∣∣2
L2(Ω)

≤ 0. (3)

The main criticism to the SW formulation is that, although stable, it does not preserve the lowest modes during time
evolution, even in absence of artificial dissipation. On the contrary, the AW formulation perfectly conserves all the
basic invariants, but its stability requires artificial dissipation. What we are able to prove in our work is an L2(Ω)
stability result when ν is sufficiently large. The result is achieved thanks to a suitable extension of the Poincarè
inequality in weighted norms defined on the real line. Stability then follows by classical estimates for bilinear forms
in Sobolev spaces. When instead ν is small, the result is certainly not true in the continuous case, but still holds in
the framework of numerical time discretizations, by suitably linking ν to the parameter ∆t, the final time T , and the
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maximum integer N used for the Hermite representation in the variable v. Preliminary, we show how to get these
relations for a simple linear advection-diffusion model problem, and successively we partly extend our arguments
to equation (1). By the way, from the practical viewpoint the use of the viscous term should not just be interpreted
as a way to improve the time-stability of the schemes for the Vlasov-Poisson system, but has an important role in
the reduction of the negative phenomenon known as filamentation [4], which shows up as a polluting effect on the
computed solutions, due to the nonlinearity of the problem in conjunction with the truncation of the high modes.

We would like to remark that a stability result for the Hermite approximation of 1D−1V Vlasov-Poisson model was
provided in [14], where L2 boundedness has been proven with respect to the parameter N . However, that paper fails
in proving absolute stability with respect to time, since the estimate there provided contains an exponential growth
in T on the right-hand side of the inequality. The major result of our work is in achieving a stability estimate where
boundedness in time is uniformly guaranteed.

The outline of the paper is as follows. In Section 2, we introduce the discretization framework and basic definitions
concerning with the spectral Hermite method. In Sections 3 and 4 we present the Lenard-Bernstein operators for
the AW and SW Hermite functions, respectively. We prove their dissipative nature and that they preserve unchanged
the first modes of the spectral expansion. In Sections 5 and 6 we study the absolute stability in time of the modified
advection problem

∂f

∂t
− ∂f

∂v
= −(−1)kνL̃(k)L(k)f, (4)

for the unknown scalar field f(v, t), with the initial condition f(v, 0) = f0(v), and study the impact of the stabilizing
operator L̃(k)L(k). In Section 7, we apply an implicit time discretization scheme to the system of coefficients resulting
from the Hermite expansion, and investigate its absolute stability in suitable weighted norms. In Section 8, we extend
our approach to the full spectral discretization of the 1D-1V Vlasov-Poisson equations, and derive several sufficient
conditions to guarantee the stability of the method. In Section 9 we provide our final remarks and conclusions. The
appendix reports a couple of original theorems concerning with the Poincaré inequality involving Hermite functions.
These results are crucial for the analysis carried out in the paper.

2. Hermite polynomials and their properties

We start by pointing out some well-known relations concerning Hermite polynomials that are, as usual, denoted by
Hn(v), and considered as functions of the independent variable v ∈ R. The integer number n is the polynomial
degree. First of all, we have the recursion formula

H0 = 1, H1 = 2v, Hn+1 = 2vHn − 2nHn−1 for n ≥ 1, (5)

and the differential equation

H ′′n − 2vH ′n + 2nHn = 0, (6)

which holds for any n ∈ N. Here the primes denote differentiation with respect to v. The next formulas link Hermite
polynomials of different degrees

H ′n = 2vHn −Hn+1, (7)

H ′0 = 0 and H ′n = 2nHn−1, ∀n ≥ 1. (8)

The last relation can recursively be generalized as follows

H(m)
n =

dmHn

dvm
=

0 n < m,

2m
n!

(n−m)!
Hn−m n ≥ m.

(9)

We recall that Hermite polynomials are orthogonal with respect to the weight function e−v
2

and are normalized in
such a way that ∫

R

H2
ne
−v2 dv =

√
π 2n n!. (10)

4



For n > m, we recursively find that∫
R

(
H(m)
n

)2
e−v

2

dv = 2m
n!

(n−m)!

∫
R

H2
ne
−v2 dv. (11)

In fact, by examining relation (8), it turns out that the derivatives of the Hermite polynomials are also orthogonal with
respect to the weight e−v

2

. Using (8) and (10) for n ≥ 1, we can obtain∫
R

(
H ′n
)2
e−v

2

dv = 4n2

∫
R

(
Hn−1

)2
e−v

2

dv = 4n2
√
π 2n−1 (n− 1)!

= 2n
√
π 2n n! = 2n

∫
R

H2
ne
−v2 dv. (12)

The above relation is trivially satisfied also for n = 0. Equation (11) follows by applying (10) recursively. We then
consider the generic function ϕ that, in appropriate circumstances, can be formally expanded as a series of Hermite
polynomials ϕ =

∑∞
n=0 CnHn. The coefficients Cn of ϕ are obtained as usual, i.e.

Cn =
1√

π 2n n!

∫
R

ϕHne
−v2 dv. (13)

Of course, ϕ has to be such that all the above integrals are finite. From the orthogonality of Hermite polynomials and
their derivatives, it follows that∫

R

ϕ2e−v
2

dv =

∞∑
n=0

C2
n

∫
R

H2
ne
−v2 dv,

∫
R

(ϕ′)2e−v
2

dv =

∞∑
n=0

C2
n

∫
R

(H ′n)2e−v
2

dv.

The last summation can also start from n = 1 since H ′0 = 0.
Some important inequalities that will be used later in this paper are collected in the appendix. They are not only

crucial in proving the stability of the schemes proposed, but they constitute an interesting new result in the theory of
Hermite expansions.

We end this preliminary section by introducing a few definitions concerning Hermite functions, i.e., those functions
that can be written as a linear combination (finite or infinite) of the elements of the Hermite basis functions {ψn}.
Following the current literature, we will adopt a suitable notation in order to distinguish the so-called Symmetrically-
Weighted (SW) case, from the Asymmetrically-Weighted (AW) one. The reason of this setting will be made clear as
we proceed with the exposition. We consider the following definition

ψn(v) =

{
γSWn Hn(v)e−v

2/2 symmetrically-weighted case,
γAWn Hn(v)e−v

2

asymmetrically-weighted case,
(14)

for suitable choices of the real coefficients γSWn and γAWn (see below). Besides, we introduce the dual basis functions
defined by

ψn(v) =

{
γ̃SWn Hn(v)e−v

2/2 symmetrically-weighted case,
γ̃AWn Hn(v) asymmetrically-weighted case.

(15)

We have

γSWn = γ̃SWn = (
√
π2n n!)−

1
2 , (16)

and

γAWn = (π2n n!)−
1
2 , γ̃AWn = (2n n!)−

1
2 . (17)

Such choices are compatible with the orthogonality relation∫
R

ψnψ
me−v

2

dv = δn,m. (18)
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3. Lenard-Bernstein diffusive operators in the AW case

Throughout the paper we will use indifferently the notation ∂f/∂v and f ′ to denote the partial derivative of func-
tions like f(v) or f(t, v), regardless of their possible dependence on time. We study the differential operator (k ≥ 1)
that appears in the modified Vlasov equation (1) and in the simplified model equation (4). This section will be devoted
to the AW case. In this framework, the operator is the result of the functional product of the two first-order operators

L =
1

2

∂

∂v
+ vI, L̃ =

∂

∂v
, (19)

where I is the identity. The second operator L̃ is trivially the first derivative with respect to the variable v. The
combination of L and L̃ provides the so called second-order Lenard-Bernstein-like operator [24]. We investigate the
action of L̃L on Hermite functions written in the form f(v) = h(v)e−v

2

, where h is a polynomial. Concerning the
operator L, we have

Lf =

(
1

2

∂

∂v
+ vI

)
f =

1

2
h′e−v

2

− vhe−v
2

+ vhe−v
2

=
1

2
h′e−v

2

. (20)

Clearly, Lf is identically zero if h is a constant. Therefore, correspondingly to h = 1, we find that L(e−v
2

) = 0.
Similarly, for k = 2 we have

L2f = L(Lf) = L

(
1

2
h′e−v

2

)
=

1

4
h′′e−v

2

− 1

2
vh′e−v

2

+
1

2
vh′e−v

2

=
1

4
h′′e−v

2

, (21)

and, in general, for k ≥ 2

Lkf = L(Lk−1f) =
1

2k
h(k)e−v

2

. (22)

Equation (22) can be proved recursively starting from (20), by assuming successively thatLk−1 = (1/2k−1)h(k−1)e−v
2

and applying the definition of L given in (19).
We are ready to prove our first result, aimed to show that the combined Lenard-Bernstein operator −(−1)kL̃kLkf ,

for k ≥ 1, is dissipative.

Theorem 3.1 Let f(v, t) = h(v, t)e−v
2

be the solution of
∂f

∂t
+ (−1)kL̃kLkf = 0 (k ≥ 1). (23)

We then have
d

dt

∫
R

h2e−v
2

dv ≤ 0. (24)

Proof. We start from the case k = 1, that corresponds to

L̃Lf = L̃

(
1

2

∂

∂v
+ vI

)
f = L̃

(
1

2
h′e−v

2

)
=

1

2
h′′e−v

2

− h′ve−v
2

. (25)

Within the space of polynomials, L̃Lf is zero if and only if h is constant. To prove that L̃L is a dissipative operator,
we rewrite (23) as

∂f

∂t
− L̃Lf =

∂f

∂t
− ∂Lf

∂v
= 0, (26)

We multiply (26) by h, integrate overR, and use integration by parts for the second term. The boundary terms are zero
since they can be expressed as a polynomial multiplied by e−v

2

, which tends to zero for |v| → ∞. Considering (20),
we obtain

0 =

∫
R

(
∂f

∂t
− L̃Lf

)
h dv =

∫
R

(
∂f

∂t
− ∂Lf

∂v

)
h dv =

∫
R

∂f

∂t
h+

∫
R

(
Lf
)
h′ dv −

[(
Lf
)
h
]+∞
−∞

=
1

2

d

dt

∫
R

h2e−v
2

dv +
1

2

∫
R

(
h′
)2
e−v

2

dv, (27)
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which is equivalent to

d

dt

∫
R

h2e−v
2

dv = −
∫
R

(
h′
)2
e−v

2

dv ≤ 0, (28)

so that L̃Lf can be considered a dissipative operator for the weighted L2(R) norm. We repeat the same analysis for
the fourth-order operator (k = 2). We have the time dependent problem

∂f

∂t
+ L̃2L2f =

∂f

∂t
+
∂2L2f

∂v2
= 0 (29)

(note the change of sign with respect to equation (26)). As before, we multiply (29) by h and integrate overR. Using
integration by parts (twice), we note that all the boundary terms are zero since they always consist of a polynomial
multiplied by the Gaussian function e−v

2

, which tends to zero for |v| → ∞. Thus, omitting the boundary terms and
using (21) in the next calculation, we obtain

0 =

∫
R

(
∂f

∂t
+
∂2L2f

∂v2

)
h dv =

1

2

d

dt

∫
R

h2e−v
2

dv +

∫
R

(
L2f

)
h′′ dv

=
1

2

d

dt

∫
R

h2e−v
2

dv +
1

4

∫
R

(
h′′
)2
e−v

2

dv. (30)

This implies that −L̃2L2f plays the role of a diffusive term, since

d

dt

∫
R

h2e−v
2

dv = −1

2

∫
R

(
h′′
)2
e−v

2

dv ≤ 0. (31)

The general case can be handled in a very similar way. We write the time-dependent problem with the 2k-th order
operator as follows:

∂f

∂t
+ (−1)kL̃kLkf =

∂f

∂t
+ (−1)k

∂kLkf

∂vk
= 0 (k ≥ 1). (32)

Going through the same steps it follows that −(−1)kL̃kLkf is a diffusive operator. Indeed, integrating by parts k
times and recalling (22), yields

−(−1)k
∫
R

(
L̃kLkf

)
h dv = −(−1)k

∫
R

∂kLkf

∂vk
h dv

= −(−1)k(−1)k
∫
R

(
Lkf

)
h(k) dv = − 1

2k

∫
R

(
h(k)

)2
e−v

2

dv ≤ 0,

where h(k) denotes the k-th derivative of h with respect to v.

We note that in the AW case, the weighted norm of h has no relation with the L2(R) norm of f . From the previous
theorem we deduce that the operator of order 2k so far examined is not strictly negative definite, since its kernel is not
empty. In particular, we have the following result (recall the definition (14) in the AW case).

Theorem 3.2 For n ≥ 0, the AW Hermite function ψn is an eigenfunction of the 2k-th operator L̃kLk (k ≥ 1), since
we have

L̃kLkψn = (−1)k n(n− 1) . . . (n− (k − 1))ψn = (−1)k
n!

(n− k)!
ψn. (33)

The eigenvalue is zero for 0 ≤ n ≤ k − 1.

Proof. We begin with considering the case k = 1. From (25) a direct calculation yields

L̃Lψn = L̃L
(
γAWn Hne

−v2) =
γAWn

2

(
H ′′n − 2vH ′n

)
e−v

2

=
γAWn

2

(
− 2nHne

−v2)
= −nγAWn Hne

−v2 = −nψn, (34)
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where we used the differential equation (6). In other words, ψn is an eigenfunction of the differential operator L̃Lwith
eigenvalue −n. As such eigenvalue is zero for n = 0, it follows that L̃L acts on Hermite functions without altering
the first coefficient C0. The minus sign in (34) is a further confirmation of the diffusive nature of the operator.

Similar relations hold for L̃2L2 and the more general operator L̃kLk. In the case k = 2, we use (21) with h = Hn,
so to obtain

L̃2L2ψn = L̃2L2
(
γAWn Hne

−v2) = L̃2
(
γAWn

1

4
H ′′ne

−v2
)

=
γAWn

4

(
H ′′ne

−v2
)′′
. (35)

To compute the last term in the above equation we proceed in two steps, starting from the first derivative of H ′′e−v
2

.
Using (6), we have(

H ′′ne
−v2
)′

=
((

2vH ′n − 2nHn

)
e−v

2
)′

= (2H ′n + 2vH ′′n − 2nH ′n) e−v
2

− 2v (2vH ′n − 2nHn) e−v
2

= (2H ′n + 2vH ′′n − 2nH ′n) e−v
2

− 2vH ′′ne
−v2 = 2(1− n)H ′ne

−v2 . (36)

Using again (6), we end up with(
H ′ne

−v2
)′

= H ′′ne
−v2 − 2vH ′ne

−v2 = (H ′′n − 2vH ′n) e−v
2

= −2nHne
−v2 . (37)

Hence, the second derivative of H ′′e−v
2

with respect to v is readily given by collecting the relations in (36) and (37).
The result is (

H ′′ne
−v2
)′′

=

((
H ′′ne

−v2
)′)′

=
(

2(1− n)H ′ne
−v2
)′

= 4n(n− 1)Hne
−v2 . (38)

Replacing (38) in (35), finally yields

L̃2L2ψn =
γAWn

4
4n(n− 1)Hne

−v2 = n(n− 1) γAWn Hne
−v2 = n(n− 1)ψn, (39)

which shows that ψn is an eigenfunction of L̃2L2 corresponding to the eigenvalue n(n−1). Note that such eigenvalue
is zero for n = 0 and n = 1, which means that the fourth-order operator L̃2L2 does not modify the first two modes of
the expansion of f . The above arguments can be easily repeated for a general integer k ≥ 1. For the sake of brevity
we omit the details. We conclude that every element ψn (n ≥ 0) of the basis is an eigenfunction of the 2k-th operator
L̃kLk with eigenvalue equal to (−1)k n!/(n− k)! for n ≥ k and zero for 0 ≤ n ≤ k − 1.

We proceed our analysis by investigating the action of the operators on Hermite functions expressed as linear
combinations of the basis functions ψn, as well as the implications on some conservation properties. Similar topics
were analyzed in the more specific context of Vlasov-based models [9, 4].

We consider again the expansion of f = he−v
2

, where, based on (13), the polynomial function is given by

h =

∞∑
n=0

CnHn. (40)

By introducing the normalization factor γAWn and recalling the definitions (14)-(15), we discover that

f = he−v
2

=

( ∞∑
n=0

CnHn

)
e−v

2

=

∞∑
n=0

Cn
γAWn

(
γAWn Hne

−v2
)

=

∞∑
n=0

C?nψn, (41)

where C?n = Cn/γ
AW
n . Since, according to the previous theorem, ψn is an eigenfunction of the generalized Lenard-

Bernstein operators, we obtain the relations
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L̃Lf =

∞∑
n=0

C?nL̃Lψn =

∞∑
n=0

(−n)C?nψn, (42)

L̃2L2f2 =

∞∑
n=0

C?nL̃
2L2ψn =

∞∑
n=0

n(n− 1)C?nψn, (43)

. . .

L̃kLkf =

∞∑
n=0

C?nL̃
kLkψn =

∞∑
n=0

(−1)k
n!

(n− k)!
C?nψn. (44)

from which it follows immediately that

L̃Lf =

∞∑
n=0

D(1)
n ψn with D(1)

n = −nC?n, (45)

L̃2L2f =
∞∑
n=0

D(2)
n ψn with D(2)

n = n(n− 1)C?n, (46)

. . .

L̃kLkf =

∞∑
n=0

D(k)
n ψn with D(k)

n = (−1)k
n!

(n− k)!
C?n. (47)

By definition, it holds that D(k)
0 = D

(k)
1 = . . . = D

(k)
k−1 = 0, for any k ≥ 1. The case k = 3 corresponds to the

operator used in [5, 9]. The relations established so far allow us to deduce some conservation properties as stated by
the next theorem.

Theorem 3.3 (Conservation of the m-th moment of f ) Let f(t, v) = h(t, v)e−v
2

, where h is a polynomial, be the
solution of the partial differential equation (23). Then, the m-th moment of f , for 0 ≤ m < k, is preserved with
respect to time, i.e.

d

dt

∫
R

vmf dv = 0. (48)

Proof. For m = 0, f satisfies the relation

d

dt

∫
R

f dv = 0, (49)

known as mass conservation. To prove the relation for k = 1, we integrate (23) (see (26)) onR, apply the fundamental
theorem of calculus and substitute the expression of Lf in (20) to obtain

d

dt

∫
R

f dv =

∫
R

L̃Lf dv =

∫
R

∂Lf

∂v
dv = [Lf ]

∞
−∞ =

1

2

[
h′e−v

2
]∞
−∞

= 0, (50)

since e−v
2

times a polynomial tends to zero for v → ±∞.
For k = 2, we integrate again (23) (see (29)) onR, and apply the fundamental theorem of calculus to obtain

d

dt

∫
R

f dv = −
∫
R

L̃2L2f dv = −
∫
R

∂

∂v
(L̃L2f) dv = −

[
L̃L2f

]∞
−∞

. (51)

Furthermore, by using (21), we arrive at

L̃L2f =
∂L2f

∂v
=

1

4

∂

∂v

(
h′′e−v

2
)

=
1

4

(
h′′′ − 2vh′′

)
e−v

2

. (52)
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Therefore, the last term above provides zero in (51), since the Gaussian function e−v
2

multiplied by a polynomial
tends to zero for v → ±∞. Finally, to obtain the general result for k > 2, we integrate (23) on R and apply the
fundamental theorem of calculus. In this way, we get

d

dt

∫
R

f dv = −(−1)k
∫
R

L̃kLkf dv = −(−1)k
∫
R

∂

∂v
(L̃k−1Lkf) dv = −(−1)k

[
L̃k−1Lkf

]∞
−∞

= 0, (53)

since we can prove recursively that L̃k−1Lkf is equal to a polynomial times e−v
2

, which tends to zero for v → ±∞.
We now move to the case m = 1. Here, f must satisfy the relation

d

dt

∫
R

vf dv = 0, (54)

which is known as momentum conservation. We observe that there is no momentum conservation for the operator L̃L
(m = k = 1). We then consider the two other cases in which f is either solution of (29) (using −L̃2L2f ), or (23)
(using −(−1)kL̃kLkf ). We just study the first situation, since the general case can be approached in a similar way.
We start from

d

dt

∫
R

vf dv = −
∫
R

v
∂2L2f

∂v2
dv. (55)

Then, we integrate by parts the right-hand side in order to get

d

dt

∫
R

vf dv =

∫
R

∂L2f

∂v
dv −

[
v
∂L2f

∂v

]∞
−∞

=
[
L2f

]∞
−∞ −

[
v
∂L2f

∂v

]∞
−∞

= 0. (56)

Again, the arguments in the square brackets are of the form of a polynomial multiplied by the Gaussian function e−v
2

.
Through very similar steps, that we omit for brevity, we can study the case m > 1, so arriving at equation (48), for

k > m, which is our thesis.

The conservation of momenta, for the distribution function f in the Vlasov equation, implies the conservation of
physical quantities such as the total energy. We will discuss this topic at the end of this paper.

4. Lenard-Bernstein diffusive operators in the SW case

In this section we adapt the results already obtained for the AW case to the SW context. The generalized Lenard-
Bernstein operators are now obtained by composing the first order operators

L =
∂

∂v
+ vI, L̃ =

∂

∂v
− vI. (57)

We remind that the weighted L2 inner product is now(
f, g
)

=

∫
R

fg dv =

∫
R

hfhge
−v2 dv, (58)

where f = hfe
−v2/2 and g = hge

−v2/2, and hf and hg are polynomials. This somehow justifies the adoption of the
term “symmetric”. The results are going to be analogous to those presented in the previous section. We briefly review
the main points, beginning with a theorem.
Theorem 4.1 Let f(v, t) = h(v, t)e−v

2/2 be the solution of

∂f

∂t
+ (−1)kL̃kLkf = 0 (k ≥ 1). (59)

We then have
d

dt

∫
R

f2 dv =
d

dt

∫
R

h2e−v
2

dv ≤ 0. (60)
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Proof. Again, we start from the case k = 1. We multiply equation (59) by f and integrate overR, ending up with the
equality ∫

R

(
∂f

∂t
− L̃Lf

)
f dv = 0. (61)

Using the definition of L̃ given in (57), we find that

1

2

∫
R

∂

∂t

(
h2e−v

2)
dv −

∫
R

(
(Lf)′ − vLf

)
f dv = 0, (62)

where again we denoted the derivative with respect to v of Lf by (Lf)′. We integrate by parts the second integral
of (62) and note that the boundary terms for v → ±∞ are zero. This leads us to

0 =
1

2

d

dt

∫
R

h2e−v
2

dv +

∫
R

(
Lf
)
f ′ dv − [(Lf)f ]

∞
−∞ +

∫
R

v
(
Lf
)
f dv

=
1

2

d

dt

∫
R

h2e−v
2

dv +

∫
R

(
Lf
)(
f ′ + vf

)
dv =

1

2

d

dt

∫
R

h2e−v
2

dv +

∫
R

(
Lf
)2
dv. (63)

The last relation shows that the operator L̃L introduces dissipation.
The same result holds for the fourth-order operator and the related time dependent problem

∂f

∂t
+ L̃2L2f = 0. (64)

Here, the proof is a bit more involved, but still elementary. We first note that for a generic function g we have L̃2g =
L̃(L̃g) = L̃(g′ − vg), from which it follows that

L̃2g = (g′ − vg)′ − v(g′ − vg) = g′′ − 2vg′ + (v2 − 1)g. (65)

Moreover, we have

L2f = f ′′ + 2vf ′ + (v2 + 1)f = f ′′ + 2
(
vf
)′

+ (v2 − 1)f. (66)

By multiplying equation (64) by f and integrating overR, we find that

1

2

d

dt

∫
R

h2e−v
2

dv +

∫
R

(
L̃2L2f

)
f dv = 0. (67)

From straightforward calculations using integration by parts and noting again that the boundary terms for |v| → ∞
are zero, and then using formulas (65) with g = L2f and (66), we are able to prove the following relation∫

R

(
L̃2L2f

)
f dv =

∫
R

((
L2f

)′′ − 2v
(
L2f

)′
+ (v2 − 1)L2f

)
f dv

=

∫
R

(
L2f

)
f ′′ dv + 2

∫
R

(
L2f

) (
vf
)′
dv +

∫
R

(v2 − 1)
(
L2f

)
f dv

=

∫
R

(
L2f

) (
f ′′ + 2

(
vf
)′

+ (v2 − 1)f
)
dv =

∫
R

(
L2f

)2
dv. (68)

Therefore, also (64) is dissipative in the L2(R) weighted norm.
For a general k, with the same considerations as above, we find the relation

d

dt

∫
R

h2e−v
2

dv = −
∫
R

(
Lkf

)2
dv ≤ 0, (69)

which easily brings us to the thesis.

It is important to remark that, differently from the AW case, the weighted norm of h is actually the L2(R) norm of
f . A result similar to theorem 3.2 holds. To this regard, we remind the definition given in (14) for the SW case.
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Theorem 4.2 For any n ≥ 0, the SW Hermite function ψn is an eigenfunction of the 2k-th operator L̃kLk (k ≥ 1),
since we have

L̃kLkψn = (−1)k 2k n(n− 1) . . . (n− (k − 1))ψn = (−1)k 2k
n!

(n− k)!
ψn n ≥ k. (70)

The eigenvalue is zero for 0 ≤ n ≤ k − 1.

Proof. We recall that L = ∂/∂v + vI and L̃ = ∂/∂v − vI. Let us take ψn = γSWn Hne
−v2/2. A direct calculation

yields

Lψn = γSWn

(
∂

∂v
+ vI

)
Hne

−v2/2 = γSWn

(
H ′ne

−v2/2 − vHne
−v2/2 + vHne

−v2/2
)

= γSWn H ′ne
−v2/2. (71)

Using the result above we obtain

L2ψn = L
(
Lψn

)
= L

(
γSWn H ′ne

−v2/2
)

= γSWn

(
∂

∂v
+ vI

)
H ′ne

−v2/2

= γSWn

(
H ′′ne

−v2/2 − vH ′ne−v
2/2 + vH ′ne

−v2/2
)

= γSWn H ′′ne
−v2/2. (72)

A simple recursive argument allows us to prove the formula for a generic k, i.e.

Lkψn = γSWn H(k)
n e−v

2/2, (73)

where we recall that H(k)
n = dkHn/dv

k. Indeed, we have already proved that (73) is true for k = 1 and k = 2. Since
Lk−1ψn = γSWn H

(k−1)
n e−v

2/2, we end up with

Lkψn = L
(
L(k−1)ψn

)
= L

(
γSWn H(k−1)

n e−v
2/2
)

= γSWn

(
∂

∂v
+ vI

)
(H(k−1)

n e−v
2/2)

= γSWn

(
H(k)
n e−v

2/2 − vH(k−1)
n e−v

2/2 + vH(k−1)
n e−v

2/2
)

= γSWn H(k)
n e−v

2/2. (74)

We then compute the action of L̃, L̃2, and L̃k on Lψn, L2ψn, and Lkψn, respectively. In the first case, by using (6)
we recover the relation

L̃Lψn = γSWn

(
∂

∂v
− vI

)
(H ′ne

−v2/2) = γSWn

(
H ′′ne

−v2/2 − vH ′ne−v
2/2 − vH ′ne−v

2/2
)

= γSWn (H ′′n − 2vH ′n) e−v
2/2 = γSWn (−2n)Hne

−v2/2 = −2nψn, n ≥ 1. (75)

In the second case, we first obtain

L̃L2ψn = γSWn

(
∂

∂v
− vI

)
(H ′′ne

−v2/2) = γSWn

((
H ′′n
)′
e−v

2/2 − vH ′′ne−v
2/2 − vH ′′ne−v

2/2
)

= γSWn

((
H ′′n
)′ − 2vH ′′n

)
e−v

2/2 = γSWn

((
2vH ′n − 2nHn

)′ − 2vH ′′n

)
e−v

2/2

= γSWn (2H ′n + 2vH ′′n − 2nH ′n − 2vH ′′n) e−v
2/2 = γSWn 2(1− n)H ′ne

−v2/2, n ≥ 2, (76)

and then

L̃2L2ψn = L̃(L̃L2ψn) = L̃
(
γSWn 2(1− n)H ′ne

−v2/2)
= γSWn 2(1− n)

(
∂

∂v
− vI

)
(H ′ne

−v2/2) = γSWn 2(1− n) (H ′′n − vH ′n − vH ′n) e−v
2/2

= γSWn 2(1− n) (H ′′n − 2vH ′n) e−v
2/2 = γSWn 2(1− n)(−2n)Hne

−v2/2 = 4n(n− 1)ψn. (77)

The final case, for a generic k, follows from a recursive argument, allowing us to prove that

L̃kLkψn = (−1)k 2k
n!

(n− k)!
ψn, n ≥ k. (78)
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Therefore, we conclude that every ψn is an eigenfunction of the combined 2k-th operator L̃kLk with eigenvalue
(−1)k2k n!/(n− k)!, for n ≥ k and that such operator does not modify the first k modes of the expansion of f .
Except for the factor 2k, the eigenvalue is the same as that in (33).

We end this section by investigating the action of the generalized Lenard-Bernstein operators on Hermite functions
expressed as linear combinations of the basis functions. To this purpose, we consider the expansion

f = he−v
2/2 =

[ ∞∑
n=0

CnHn

]
e−v

2/2 =

∞∑
n=0

Cn
γSWn

[
γSWn Hne

−v2/2
]

=

∞∑
n=0

C?nψn, (79)

where C?n = Cn/γ
SW
n . Since ψn is an eigenfunction, we readily find the following relations

L̃Lf =

∞∑
n=0

C?nL̃Lψn =

∞∑
n=0

(−2n)C?nψn, (80)

L̃2L2f =

∞∑
n=0

C?nL̃
2L2ψn =

∞∑
n=0

4n(n− 1)C?nψn, (81)

. . .

L̃kLkf =

∞∑
n=0

C?nL̃
kLkψn =

∞∑
n=0

(−1)k2k
n!

(n− k)!
C?nψn, (82)

from which we deduce that

L̃Lf =

∞∑
n=0

D(1)
n ψn with D(1)

n = −2nC?n, (83)

L̃2L2f =

∞∑
n=0

D(2)
n ψn with D(2)

n = 4n(n− 1)C?n, (84)

. . .

L̃kLkf =

∞∑
n=0

D(k)
n ψn with D(k)

n = (−1)k2k
n!

(n− k)!
C?n. (85)

By definition, it holds that D(k)
0 = D

(k)
1 = . . . = D

(k)
k−1 = 0, for any k ≥ 1.

As far as mass and momentum conservations are concerned, we do not have the same results of the AW case.
Indeed, we can check that equations (49) and (48) do not hold anymore in the symmetric case. Instead, we can prove
the conservation of the weighted integrals∫

R

f(v, t)e−v
2/2 dv and

∫
R

vf(v, t)e−v
2/2 dv,

which however are not associated with any physical quantity of interest in the continuous setting.

5. Hermite approximation of a pure advection equation

We take into account the following time-dependent problem for the unknown scalar field f = f(v, t)

∂f

∂t
− ∂f

∂v
= 0, (86)

supplemented with the initial condition

f(v, 0) = f0(v). (87)
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Our aim is to study the absolute stability in time either in the SW case or the AW case. For convenience, we
formally write our differential problem in variational form. Nevertheless, an analysis of the well-posedness in suitable
functional spaces, and the convergence properties of a Galerkin type approximation, are not the main issues here, so
we will skip such technical details to simplify the presentation.

Regarding the SW case, we present the following result.

Theorem 5.1 The L2(R) norm of the function f(v, t) = h(v, t)e−v
2/2 (where h is a polynomial in v) solving equa-

tion (86) in weak form, is conserved, i.e.
1

2

d

dt

∫
R

f2 dv =
1

2

d

dt

∫
R

h2e−v
2

dv = 0. (88)

Proof. To prove the statement, we multiply (86) by the test function f and integrate overR, so obtaining

0 =

∫
R

(
∂f

∂t
− ∂f

∂v

)
f dv =

∫
R

(
∂

∂t

(
f2

2

)
− ∂

∂v

(
f2

2

))
dv =

1

2

d

dt

∫
R

h2e−v
2

dv. (89)

The relation is true since the integral of ∂f2/∂v is zero because f(v, t)→ 0 exponentially for v → ±∞.

This stability result is encouraging but, unfortunately, the same is not going to be true for the AW case. In fact,
we may try to study the stability with the same approach followed in the proof before. This time we set f(v, t) =

h(v, t)e−v
2

(where h is a polynomial in v). We then take h as test function and integrate over R. In this way, we
obtain

0 =

∫
R

(
∂f

∂t
− ∂f

∂v

)
h dv =

∫
R

h
∂h

∂t
e−v

2

dv −
∫
R

h
∂f

∂v
dv. (90)

Successively, we integrate by parts the last term, substitute f = he−v
2

and integrate by parts again. All the boundary
terms are zero since they involve a polynomial in v multiplied by a decaying exponential and are omitted. This
procedure yields

−
∫
R

h
∂f

∂v
dv =

∫
R

f
∂h

∂v
dv =

∫
R

∂h

∂v
he−v

2

dv =

∫
R

∂

∂v

(
h2

2

)
e−v

2

dv =

∫
R

h2 v e−v
2

dv. (91)

Finally, we find out that

0 =
d

dt

∫
R

h2

2
e−v

2

dv +

∫
R

v h2e−v
2

dv. (92)

Since v ∈ R can assume positive or negative values, the sign of the second integral is undetermined, and therefore,
the AW Hermite variational formulation is not absolutely stable in the weighted L2(R) norm. Note, however, that
such weighted norm has no physical meaning.

The conclusion is that both the continuous case and SW case, preserve the quantity
∫
R
f2dv. Unfortunately, this

quantity is not preserved in the AW case. Indeed, we are in the sad situation in which neither the weighted L2-norm
nor the unweighted one are conserved. For this reason, it is necessary to make use of the dissipation operator as it will
be discussed in section 6.

We proceed now by deriving the recursive equation for the coefficients of the Hermite expansion in both AW and
SW cases. In order to simplify the notation, in the expressions below, we set γn = γSWn when we deal with the SW
case or γn = γAWn when we deal with the AW case (we recall that these coefficients are defined in (16) and (17)).
Also, we use the notation C?n = Cn/γn to denote the coefficients of the expansion in the basis functions ψn. We start
by writing

f(v, t) =

∞∑
n=0

Cn(t)Hn(v)e−v
2

=

∞∑
n=0

C?n(t)ψn(v). (93)

Accordingly, the initial condition is set through the relation
∞∑
n=0

Cn,0Hn(v)e−v
2

=

∞∑
n=0

C?n,0ψn(v) = f0(v). (94)
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To derive the system of equations for the coefficients C?n, we multiply (86) by ψm (see (15)) and integrate in v over
R. All integrals can easily be computed using the orthogonality properties (see (18)). In view of the expansion (93),
we have that

0 =

∫
R

(
∂f

∂t
− ∂f

∂v

)
ψm dv =

∞∑
n=0

.
C
?

n(t)

∫
R

ψnψ
m dv −

∞∑
n=0

C?n(t)

∫
R

dψn
dv

ψm dv

=
.
C
?

m(t)−
∞∑
n=0

C?n(t)

∫
R

dψn
dv

ψm dv, (95)

where the upper dot indicates the derivative with respect to t. The equation for each coefficientC?n(t) can be recovered
by reformulating dψn/dv in terms of the basis functions ψn and using the orthogonality against ψm. We distinguish
the AW and the SW cases in the following subsections.

5.1. Symmetrically-weighted case

To ease the notation in the developments of this section, we continue using the symbol γn instead of γSWn , which
is defined in (16). For n ≥ 1, using (7)-(8), we compute dψn/dv as follows

dψn
dv

=
d

dv

(
γnHne

−v2/2
)

= γn (H ′n − vHn) e−v
2/2 = γn

(
1

2
H ′n +

1

2
H ′n − vHn

)
e−v

2/2

= γn

(
nHn−1 −

1

2
Hn+1

)
e−v

2/2 =
nγn
γn−1

ψn−1 −
1

2

γn
γn+1

ψn+1. (96)

Thus, equation (95) implies that
.
C
?

n(t) =
(n+ 1)γn+1

γn
C?n+1(t)− 1

2

γn−1

γn
C?n−1(t), (97)

that we supplement with the initial condition C?n(0) = C?n,0. Equivalently, by getting rid of the normalizing factors,
one has for n ≥ 1

.
Cn(t) = (n+ 1)Cn+1(t)− 1

2
Cn−1(t), (98)

with the (obvious) initial condition Cn(0) = Cn,0. The case n = 0 can be treated separately, by observing that

dψ0

dv
=

d

dv

(
γ0H0e

−v2/2
)

= −γ0ve
−v2/2 = − γ0

2γ1

(
γ1 2ve−v

2/2
)

= − γ0

2γ1

(
γ1H1e

−v2/2
)

= − γ0

2γ1
ψ1 = − 1√

2
ψ1 ⇒

∫
R

dψ0

dv
ψ0 dv = 0,

since H0(v) = 1, H1(v) = 2v, and γ0/γ1 =
√

2. Recalling (95) we finally get
.
C0(t) = 0 ⇒ C0(t) = C0,0 ∀t. (99)

5.2. Asymmetrically-weighted case

As in the previous section, we adopt the symbol γn instead of γAWn , which is defined in (17). In this case, using (7)
and the definition of ψn+1, we have

dψn
dv

=
d

dv

[
γnHne

−v2
]

= γn (H ′n − 2vHn) e−v
2

= −γnHn+1e
−v2 = − γn

γn+1
ψn+1, (100)

which now provides the differential equation for n ≥ 1
.
C
?

n(t) = −γn−1

γn
C?n−1(t), (101)
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supplemented with the initial condition C?n(0) = C?n,0. This is equivalent to
.
Cn(t) = −Cn−1(t). (102)

Moreover we have the initial conditions Cn(0) = Cn,0, hence, C0(t) = C0,0 for every t ≥ 0. For n = 0 we have the
same situation as in (99).

We continue by providing the explicit solution to the above system of equations. For instance, when n = 1, we
need to solve

.
C1(t) = −C0(t) ⇒ C1(t) = C1,0 − C0,0t. (103)

Clearly, this coefficient grows in magnitude with t. By successive integrations, one can prove that the n-th coefficient
behaves as tn. In practice, it is possible to find numbers α(n)

` in such a way that

Cn(t) = γnC
?
n(t) =

n∑
`=0

α
(n)
` t`, (104)

which is clearly unbounded for t tending to infinity. We already proved that the advection problem in the AW case is
not absolutely stable in the L2(R)-weighted norm. The result in (104) confirms this statement. A way to stabilize the
approximation scheme is to introduce some numerical dissipation, though this may not be the only option. We will
study this approach in the next section.

6. The advection equation with the stabilization term in the AW case

Since we know that the Lenard-Bernstein combined operator has a dissipative nature, we consider a modified
advection equation with such an operator at the right-hand side. We aim at investigating how this modification may
impact in the stability of the AW case (remind that the SW case is already stable with no need of dissipation). We start
with k = 1, so that adding the second-order operator νL̃L to the right-hand side of the advection equation yields

∂f

∂t
− ∂f

∂v
= νL̃Lf. (105)

The stability of the AW Hermite discretization is stated by the next theorem.

Theorem 6.1 (Stability for the AW case with dissipation) Let f(v, t) = h(v, t)e−v
2

, with h polynomial in v, be
the solution of the differential problem (105) with the initial condition (87). Then, it holds that∫

R

h2e−v
2

dv ≤
∫
R

h2
0 dv =

∫
R

h(v, 0)2 dv, (106)

provided ν >
√

2.

Proof. We will prove that the term on the right-hand side of (105) acts like a stabilization term. To this end, we set
f = he−v

2

, take h as the test function, and integrate (105) overR. For the term νL̃Lf we argue as done in (27). Thus,
we get ∫

R

(
∂f

∂t
− ∂f

∂v

)
h dv = ν

∫
R

(
L̃Lf

)
h dv = −ν

2

∫
R

(
h′
)2
e−v

2

dv. (107)

After integration by parts, we apply the Young inequality (with constant σ) to obtain

1

2

d

dt

∫
R

h2e−v
2

dv = −
∫
R

h′he−v
2

dv − ν

2

∫
R

(
h′
)2
e−v

2

dv ≤
∣∣∣∣∫
R

h′he−v
2

dv

∣∣∣∣− ν

2

∫
R

(
h′
)2
e−v

2

dv

≤ 1

2σ

∫
R

h2e−v
2

dv +
1

2
(σ − ν)

∫
R

(
h′
)2
e−v

2

dv, (108)

where we used the fact that the boundary contributions from the integration by parts are zero. From the Poincarè
inequality (A.1) (take ϕ = h) we have

−1

2

∫
R

(
h′
)2
e−v

2

dv ≤ −
∫
R

h2e−v
2

dv +
√
πC2

0 . (109)
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Assuming ν > σ in (108), using (109) we find that

1

2

d

dt

∫
R

h2e−v
2

dv ≤
(

1

2σ
− (ν − σ)

)∫
R

h2e−v
2

dv + (ν − σ)
√
πC2

0 . (110)

The coefficient
(
1/(2σ) − (ν − σ)

)
is negative if ν > σ + 1/(2σ). Since the minimum of σ + 1/(2σ) for σ > 0 is√

2 we can assume that ν >
√

2. Using this choice, we find that

1

2

d

dt

∫
R

h2e−v
2

dv ≤ −
(
ν −
√

2
)∫

R

h2e−v
2

dv + (ν − 1)
√
πC2

0 . (111)

Now, we consider C0(t) = C0(0) = C0,0 and introduce the quantities

K =
ν − 1

ν −
√

2

√
πC2

0,0 and Y (t) =

∫
R

h2e−v
2

dv −K, (112)

so we can rewrite (111) as

1

2

d

dt
Y (t) ≤ −

(
ν −
√

2
)
Y (t), (113)

since K is constant. Note that for t = 0 we have

Y (0) =

∫
R

h2
0 e
−v2 dv −K, (114)

where h0 = h(v, 0), which is recovered from the expansion of the initial solution f0. Finally, an application of the
Gronwall’s inequality yields

Y (t) ≤ Y (0) exp
(
−2
(
ν −
√

2
)
t
)
≤ Y (0), (115)

since the argument of the exponential is negative. Using the expression of Y (t) and Y (0), respectively given in (112)
and (114), the condition Y (t) ≤ Y (0) implies∫

R

h2e−v
2

dv ≤
∫
R

h2
0 e
−v2 dv =

∫
R

h(v, 0)2 e−v
2

dv, (116)

which is the stability result we were looking for. Note that ν >
√

2 is a sufficient but not necessary conditions for
stability.

Concerning the case k > 1, a result of stability for ν sufficiently large, can be given following the same steps of the
case k = 1. We just provide here a sketch of the proof. Thanks to (27), formula (107) can be rewritten as∫

R

(
∂f

∂t
− ∂f

∂v

)
h dv = −(−1)kν

∫
R

(
L̃(k)L(k)f

)
h dv = − ν

2k

∫
R

(
h(k)

)2
e−v

2

dv. (117)

As in (108) we apply the Schwarz and Young inequalities. Successively, we estimate the right-hand side of (117) by
using (A.7) with p = 1 and m = k. Through (109), we arrive at

1

2

d

dt

∫
R

h2e−v
2

dv ≤ Φ1

∫
R

h2e−v
2

dv + Φ2, (118)

where

Φ1 =
1

2σ
− ν(k − 1)! + σ and Φ2 =

(
ν(k − 1)!− σ

)√
πC2

0 + ν(k − 1)!
√
π

k−1∑
`=1

2`
(`!)2

(`− 1)!
C2
` . (119)

Now, we define

K =

(
ν(k − 1)!− σ

)
ν(k − 1)!− σ − 1

2σ

√
πC2

0 and Y (t) =

∫
R

h2e−v
2

dv −K, (120)
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so that equation (108) can be rewritten as:

1

2

d

dt
Y (t) ≤ Φ1Y (t) + Ψ1(t), where Ψ1(t) = ν(k − 1)!

√
π

k−1∑
`=1

2`
(`!)2

(`− 1)!
C2
` , (121)

where we used that C0 = C0,0 is independent of t. The application of the Gronwall’s lemma leads to the final result

Y (t) ≤ Y (0)e−2Φ1t +

∫ t

0

Ψ1(τ)dτ. (122)

Choosing, for example, σ = 1 and by taking ν(k − 1)! > 3/2, it is easy to get a stability estimate that general-
izes (115) to any k ≥ 1. We also note that the diffusion parameter ν is now multiplied by (k − 1)!.

We confirm the stability result for k = 1 by deriving the explicit recursive formula for the expansion coefficients.
To this end, we consider the right-most sum in (93) and repeat the calculation of section 5.2. We now include the
stabilization term νL̃Lf , which can be treated in the AW case with the help of Theorem 3.2 with k = 1, cf. (33).
Thus, we get

0 =

∫
R

(
∂f

∂t
− ∂f

∂v
− νL̃Lf

)
ψm dv

=

∞∑
n=0

.
C?n(t)

∫
R

ψnψ
m dv −

∞∑
n=0

C?n(t)

∫
R

dψn
dv

ψm dv + ν

∞∑
n=0

nC?n(t)

∫
R

ψnψ
m dv

=
.
C
?

m(t)−
∞∑
n=0

C?n(t)

∫
R

dψn
dv

ψm dv + νmC?m(t). (123)

We compute the last integral using again (100) to obtain
.
C
?

n(t) = −γn−1

γn
C?n−1(t)− νnC?n(t), (124)

which holds for n ≥ 1, while for n = 0 we find that C?0 (t) = C?0,0 is constant. We rewrite the above system of
equations as follows

.
Cn(t) = −Cn−1(t)− νnCn(t), (125)

which actually corresponds to (102) when ν = 0. For instance, for n = 1, we find the ordinary differential equation
.
C1(t) = −C0(t)− νC1(t) = −C0,0 − νC1(t), (126)

the solution of which is

C1(t) =

(
C1,0 +

1

ν
C0,0

)
e−νt − 1

ν
C0,0. (127)

Since ν is positive,C1(t) is clearly bounded with respect to t. It is not hard to show that, for a generic n, the expression
of the n-th coefficient takes the form

Cn(t) =

n∑
`=0

α
(n)
` e−`νt, (128)

where the constants α(n)
` depend on n and the diffusion parameter ν. It is important to analyze such a dependence on

ν. Indeed, by substituting (128) into (125) for n ≥ 1 and 0 ≤ ` ≤ n− 1, we deduce the recursive relation

α
(n)
` = − 1

ν(n− `)
α

(n−1)
` ,

from which

α
(n)
` =

(−1)n−`

(n− `)! νn−`
α

(`)
` .
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From the initial condition

Cn,0 = Cn(0) =

n∑
`=0

α
(n)
` = α(n)

n +

n−1∑
`=0

α
(n)
` ,

we find the expression of α(n)
n , which is given by

α(n)
n = Cn,0 −

n−1∑
`=0

α
(n)
` = Cn,0 +

n−1∑
`=0

(−1)n−`

(n− `)! νn−`
α

(`)
` .

For example, starting from α0
0 = C0,0, for n = 1, we find that α(1)

1 = C1,0 − α0
0/ν = C1,0 − C0,0/ν. Similarly,

α
(2)
2 is computed from α

(0)
0 and α(1)

1 , and the subsequent coefficients are obtained from those already computed. One
realizes that ν appears at the denominator to the n-th power. It turns out that the coefficients Cn(t) in (128) are of the
form Cn(0) plus a dissipative term. The stronger dissipation is obtained when ` = 1, which provides a contribution
like e−νt/ν (see (127)). If we do not want this dissipation to be too heavy so that the perturbation is of order ε when
we integrate until the final time T , we can consider e−νT ≈ νε and choose T ≈ |ln(νε)| /ν.

7. Time discretization of the 1-D problem

We study the time discretization of the system of differential equations in (125). We use an implicit conservative
method in time such as the trapezoidal rule. For a time-step ∆t > 0, we write for j ≥ 1

Cjn − Cj−1
n

∆t
= −

Cjn−1 + Cj−1
n−1

2
− νnC

j
n + Cj−1

n

2
, (129)

with the initial condition C0
n = Cn,0, for n ≥ 1. Instead, for n = 0 we have Cj0 = C0,0,∀j ≥ 0. As an example we

can make the formula explicit for n = 1

Cj1

(
1 +

ν

2
∆t
)

= Cj−1
1

(
1− ν

2
∆t
)
−∆tC0,0. (130)

After defining χn = (1− 1
2νn∆t)/(1 + 1

2νn∆t), n ≥ 1, we trivially get |χn| < 1. By recursive arguments, one can
show that the expression for Cj1 has the form of a linear combination of powers of χ1, i.e.

Cj1 =

j∑
`=0

(χ1)`α`, (131)

where the numbers α` depend on ν and ∆t. This expression is inserted in (129) in order to compute the sequence
Cj2 ,∀j ≥ 0, and so on.

We may assume that the approximate solution of (105) belongs to the space Hermite functions where the poly-
nomials degree is less or equal to N . When n reaches the value N , the expression of the corresponding coefficients
CjN ,∀j ≥ 0, is a combination of all the powers (χn)` with 1 ≤ n ≤ N and 0 ≤ ` ≤ j. Since |χN | < 1, the
discretization method is always unconditionally stable. However, a wise relation between the parameters N , ν and
∆t should be set up in order to avoid unpleasant numerical effects due to the stiffness of the originating differential
system (125) for N large. A rule of thumb is to require that the product νN∆t is of the order of unity. Actually, if
we analyze (128) when n = N , the most significant term is that given by the exponential e−Nνt, displaying a very
steep tangent for t = 0. Although there are in principle no restrictions on ∆t for the trapezoidal scheme, such quick
variations in time are well resolved only if the time-step is maintained suitably small.

The above arguments indicate that absolute stability for the continuous problem may be expected for any ν > 0,
whereas in (106) the proof was only provided for ν >

√
2.

Indeed, we conjecture that the stability in the L2-weighted norm is not verified for values of ν less than a certain
constant. However, it is possible to construct milder weighted norms where a result of stability can still be achieved
for any ν. We formally state this result in the next theorem, which is also our main stability theorem for the AW
discretization applied to the advection equation with the addition of the Lenard-Bernstein type operator.
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Theorem 7.1 (Improvement of the stability theorem for the AW Hermite method) Let f be the solution of (105)
with the initial datum (87). Let Cn(t) be the coefficients defined by the differential system (125). Then, there exists a
sequence of positive weights {wn}n≥1 such that

∞∑
n=1

wnC
2
n(t) ≤

∞∑
n=1

wnC
2
n(0). (132)

This inequality holds for any ν > 0.

Proof. For any n ≥ 1, we multiply (125) by Cn and use the Young inequality on the right-hand side to obtain
1

2

d

dt
C2
n = −CnCn−1 − νnC2

n ≤
1

2σn
C2
n +

σn
2
C2
n−1 − νnC2

n. (133)

The family of parameters σn > 0 will be decided later on. We multiply both sides of the inequality above by a weight
wn > 0 and sum over index n, so obtaining

1

2

d

dt

∞∑
n=1

wnC
2
n ≤

∞∑
n=1

1

2σn
wnC

2
n +

∞∑
n=1

σn
2
wnC

2
n−1 −

∞∑
n=1

νnwnC
2
n. (134)

By shifting the index in the sum containing Cn−1 and collecting the corresponding terms under the same symbol of
summation, we get

1

2

d

dt

∞∑
n=1

wnC
2
n ≤

∞∑
n=1

[( 1

2σn
− νn

)
wn +

σn+1

2
wn+1

]
C2
n +

σ1

2
w1C

2
0 . (135)

For example, we may consider to choose σn = 1/(νn). Successively, we impose that the expression in the square
brackets is equal to −(ν/4)wn, which implies the recursion formula

wn+1 = ν2(n+ 1)

(
n− 1

2

)
wn. (136)

We assume that w1 = 1, although the initial setting is irrelevant to our analysis. Hence, (135) becomes

1

2

d

dt

∞∑
n=1

wnC
2
n ≤ −

ν

4

∞∑
n=1

wnC
2
n +

1

2ν
w1C

2
0 . (137)

Finally, by setting

Y (t) =

∞∑
n=1

wn[Cn(t)]2 −
(
2/ν2

)
w1[C0(t)]2, (138)

we obtain
1

2
Y ′(t) ≤ −ν

4
Y (t). (139)

Thus, by applying the Gronwall’s lemma, we conclude with the estimate

Y (t) ≤ Y (0)e−(ν/2)t ≤ Y (0), (140)

for all t ≥ 0, from which we can find the stability result (132), since the term
(
2/ν2

)
w1C

2
0 in (138) is independent of

time and can be removed.

As a final exercise, we would like to characterize the weights wn of the recursive relation (136). Assuming that
w1 = 1, from a straightforward calculation, we find

wn =
(
2ν2
)n−1

n!
(2n− 3)!

2n−2 (n− 2)!
= 2
(
ν2
)n−1

n(n− 1) (2n− 3)! . (141)

By substituting (141) into (138), we are finally able to give an expression to the stability norm. Note that such a norm
depends on ν. We can go ahead with our computations by noting that

wn ≥ 2
(
ν2
)n−1

n(n− 1)2n−2 (n− 2)! =
1

2

(
ν2
)n−1

2n n! . (142)
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Therefore, if for example ν ≥ 1, and, hence, ν2n ≥ 1 , we discover that

Y (t) =

∞∑
n=1

wnC
2
n +

2

ν2
C2

0 ≥
1

2

∞∑
n=1

(ν2)n−12n n!C2
n +

2

ν2
C2

0 ≥
1

2ν2

∞∑
n=1

ν2n2n n!C2
n +

1

2ν2
C2

0

≥ 1

2
√
πν2

(
√
π

∞∑
n=0

2n n!C2
n

)
. (143)

Thus, if we can bound Y , we automatically bound the last term in parenthesis, which corresponds to the square of the
classical L2-weighted norm of the solution f expanded as in (93). This confirms that, if ν is sufficiently large, stability
is ensured in the standard way. On the other hand, when 0 < ν < 1, we can only rely on the stability result involving
the weights wn, as stated in the last theorem.

Let us finally remark that, if we are in finite dimension (n ≤ N ), the norms are equivalent for any ν > 0, but with
constants heavily dependent on N . For example, for ν ≤ 1, which implies that (ν2)n−1 ≥ (ν2)N−1, we can write

Y (t) =

N∑
n=1

wnC
2
n +

2

ν2
C2

0 ≥
(
ν2
)N−1

2

N∑
n=1

2n n!C2
n +

2

ν2
C2

0 ≥
(
ν2
)N−1

2
√
π

(
√
π

N∑
n=0

2n n!C2
n

)
. (144)

This shows that, when Y is bounded by a constant, the classical L2-weighted norm of the solution f is bounded by that
constant multiplied by a factor behaving as the inverse of ν2N . Such a constant grows as O(ν−2N ) as ν approaches
zero, and the stability control on the L2-weighted norm of the solution f provided by inequality (144) is lost.

8. Full discretization of the Vlasov-Poisson equation

We consider the AW Hermite discretization of the 1D − 1D Vlasov-Poisson problem (1)-(2) for the distribution
function f(x, v, t) = h(x, v, t)e−v

2

, stabilized by the Lenard-Bernstein-like operator of order 2k with k ≥ 1. The
system is completed by assigning a sufficiently regular initial solution f(x, v, 0) = f0(x, v). We assume that Ω is of
the form Ωx × Ωv , and we specialize the discussion to periodic boundary conditions in space, i.e., at the boundaries
of Ωx.

Some of the reasons for approaching the Vlasov problem by Hermite discretizations have been pointed out in the
introduction. The AW context is the one that guarantees a large number of conservation laws, even with the addition
of the diffusion term discussed so far. To discretize the Vlasov-Poisson equations in time, we integrate equation (1)
with respect to the independent unknown t between tj−1 and tj by applying the trapezoidal rule, whereas we evaluate
equation (2) at tj . To ease the exposition, we assume a constant time step ∆t = tj − tj−1. For j ≥ 1, the procedure
yields

f j − f j−1

∆t
+ v

∂

∂x

(
f j + f j−1

2

)
− Ej + Ej−1

2

∂

∂v

(
f j + f j−1

2

)
= −(−1)kνL̃(k)L(k)

(
f j + f j−1

2

)
(145)

∂Ej

∂x
= 1−

∫
Ωv

f j dv. (146)

For j = 0 we impose f0 as initial datum.
Following the guidelines of the previous section, a proof of the absolute stability in time of this scheme can be

provided for a sufficiently large parameter ν. The situation gets more technically involved if ν is relatively small. We
remind you that at the end of section 7 we distinguished between ν ≥ 1 and ν < 1. In the latter case, stability is
only achieved in a suitable norm, and the generalization of this proof to the Vlasov-Poisson system becomes rather
complicated. We present here below a series of results.
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8.1. Restrictions on the parameters to guarantee absolute stability

Here, our goal is to derive sufficient stability conditions that relate the time step ∆t, the collisional factor ν and the
degree of the approximating polynomial N . To this end, let us first introduce the quantity

M = max
x∈Ωx

∣∣Ej + Ej−1
∣∣ . (147)

From now on the analysis is not rigorous, since we will not take into consideration that the problem is actually
nonlinear. Indeed, the value Ej has still to be computed, since it is strictly linked to f j through the relation (146). We
may assume that for ∆t sufficiently small, Ej ≈ Ej−1, though, as we said, we have no theorems that guarantee this
fact. Thus,M≈ 2 maxx∈Ωx

∣∣Ej−1
∣∣. Our first stability inequality reads as follows

∆t ≤ 16ν

M2
. (148)

We can get a proof by writing (145) in operator form by collecting all the terms involving the unknown variable f j

on the left-hand side, and putting all other terms that are recoverable from what is known from the previous time step
into the right-hand side term gj−1, i.e.[

I +
∆t

2
v
∂

∂x
− ∆t

2

(
Ej + Ej−1

2

)
∂

∂v
+ (−1)k

∆t

2
νL̃(k)L(k)

]
f j = gj−1. (149)

We first set f j = hje−v
2

. To simplify the exposition, we remove the label j from hj and introduce the notation

A(x) =

(∫
Ωv

h2e−v
2

dv

) 1
2

, A =

(∫
Ωx

A2 dx

) 1
2

, (150)

B(x) =

(∫
Ωv

∣∣∣∣∂h∂v
∣∣∣∣2 e−v2 dv

) 1
2

, B =

(∫
Ωx

B2 dx

) 1
2

. (151)

Then, we rewrite problem (149) in weak form. To this end, we multiply (149) by the test function φ, integrate over
Ω = Ωx × Ωv , and define the bilinear form

B(h, φ) =

∫
Ω

hφe−v
2

dv dx+
∆t

2

∫
Ω

φv

(
∂h

∂x

)
e−v

2

dv dx

− ∆t

4

∫
Ωx

(
Ej + Ej−1

) [∫
Ωv

∂
(
he−v

2)
∂v

φ dv

]
dx+

ν∆t

2k+1

∫
Ω

∂kh

∂vk
∂kφ

∂vk
e−v

2

dv dx, (152)

where the last term is obtained after successive integration by parts and using formula (22) for L(k)f . Now, we
consider the problem of finding f = he−v

2

such that

B(h, φ) =

∫
Ω

gj−1φdv dx, (153)

for every φ. Both h and φ will be represented as a suitable expansion (finite or infinite) of Hermite polynomials. We
skip the details concerning the formulation in the proper functional spaces, since this aspect is not relevant for the
analysis we are carrying out in this paper.

We want the bilinear form B to be positive definite. First, we discuss the case k = 1, and note that the last integral
in (152) can be transformed as follows

ν∆t

4

∫
Ω

∂h

∂v

∂h

∂v
e−v

2

dv dx =
ν∆t

4
B2
. (154)

In this way, we get
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B(h, h) = A2
+

∫
Ωv

∆t

2
v

(
1

2

∫
Ωx

∂h2

∂x
dx

)
︸ ︷︷ ︸

=0

e−v
2

dv

− ∆t

4

∫
Ωx

(
Ej + Ej−1

) [∫
Ωv

∂

∂v

(
he−v

2
)
h dv

]
dx+ ν

∆t

4
B2
, (155)

where we noted that the integral of ∂h2/∂x over Ωx is zero because we assumed periodicity in space. We successively
integrate by parts the third term on the right

− ∆t

4

∫
Ωx

(
Ej + Ej−1

) [∫
Ωv

∂

∂v

(
he−v

2
)
h dv

]
dx =

∆t

4

∫
Ωx

(
Ej + Ej−1

) [∫
Ωv

h
∂h

∂v
e−v

2

dv

]
dx. (156)

An evaluation of ∆t is practically possible in view of our assumption thatM ≈ 2 maxx∈Ωx

∣∣Ej−1
∣∣, and noting that

A < A and B < B. As a matter of fact we estimate (156) by applying the Schwartz and Young inequalities as follows

− ∆t

4

∫
Ωx

(
Ej + Ej−1

) [∫
Ωv

h
∂h

∂v
e−v

2

dv

]
dx

≥ −∆t

4

∫
Ωx

∣∣Ej + Ej−1
∣∣ [∫

Ωv

h2e−v
2

dv

] 1
2

[∫
Ωv

(
∂h

∂v

)2

e−v
2

dv

] 1
2

dx

≥ −∆t

4
M
∫

Ωx

AB dx ≥ −∆t

4
M
∫

Ωx

(
σ

2
A2 +

1

2σ
B2

)
dx = −∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
, (157)

where σ > 0 is an arbitrary parameter. Using this estimate in (155), we find the inequality

B(h, h) ≥ A2
+ ν

∆t

4
B2 − ∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
. (158)

To derive sufficient conditions for the positivity of the bilinear form B, i.e., B(h, h) ≥ 0, we can proceed in different
ways. First, we may impose that

∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
≤ A2

+ ν
∆t

4
B2
. (159)

We then suggest to set 1/σ2 = ν∆t/4, or, equivalently σ = 2/
√
ν∆t. With this value of σ inequality (159) becomes

∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)

=
∆tM

4
√
ν∆t

(
A2

+ ν
∆t

4
B2
)
≤
(
A2

+ ν
∆t

4
B2
)
, (160)

from which we immediately have the condition

∆tM
4
√
ν∆t

≤ 1, (161)

that with little manipulation brings us to (148). The constraint (148) constitutes a sufficient condition to realize the
invertibility of problem (149) for k = 1. Unfortunately, we are unable to provide a similar result in the case when
k > 1. The problem is that inequality (159) becomes of the form

∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
≤ A2

+
ν∆t

2k+1

∫
Ω

(
∂kh

∂vk

)2

e−v
2

dv dx. (162)

We could bound B (that only contains first derivatives) by an expression containing higher order derivatives through
a Poincaré type inequality, where an appropriate number of low modes of h is constrained to be zero. This would be
certainly not in line with the finality in this paper, which is aimed to preserve the low modes without imposing any
restriction to them.
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To recover an alternative estimate of the time step ∆t that does not involve the diffusion parameter ν, we suppose
that h is a linear combination of a finite number of Hermite polynomials with degree less than or equal to N . Thus,
our second stability condition reads as follows

∆t ≤ 4

M
√

2N
, (163)

for any positive value of ν and any k ≥ 1. In practice, when h is a finite sum, we can rely on the inverse type inequality

B ≤
√

2N A, (164)

which is easily deducible from (A.9). Thus, to control the last term at the end of (158) we proceed by writing

−∆t

4
M
(
σ

2
A2

+
1

2σ
B2
)
≥ −∆t

4
M
(
σ

2
+
N

σ

)
A2

= −∆t

4
M
√

2N A2
, (165)

where we noticed that the absolute value of the term in the middle is minimized by the choice σ =
√

2N . In this
way, the positivity of the bilinear form is realized by requiring that the last term in (165) is less than A2

+ 1
4ν∆tB2

.
This is true if we actually assume (163). Moreover, this calculation does not involve any explicit expression from the
Lenard-Bernestein diffusion operators on the right-hand side of (152) since this term is just eliminated because of its
positivity for φ = h. This means that this time the relation between N , ∆t, andM holds for any value of k ≥ 1.

We can make further considerations by putting together the inequalities (148) and (163). If ∆t is chosen to be
consistent with both of them, we get

∆t ≈ 16ν

M2
and ∆t ≈ 4

M
√

2N
⇒ ν ≈ M

4
√

2N
. (166)

Similarly,by choosing the parameters in such a way that 1/M =
√

2N∆t/4, we recover from the above relations

∆t ≈ 16ν
1

M2
= 16ν

2N∆t2

16
= 2Nν∆t2, (167)

from which we derive the estimate

νN∆t ≈ 1

2
. (168)

The last relation agrees with the suggestion, made at the end of section 6, that the product Nν∆t should be of order
of the unity.

We can say something more if the electric field is treated explicitly, i.e.: (Ej + Ej−1)/2 ≈ Ej−1, with M =
2 maxx∈Ωx

|Ej−1|. The maximum norm can be bounded through the first derivative. This is done in the following
way

M2 ≤ |Ωx|
∫

Ωx

(
∂Ej−1

∂x

)2

dx = |Ωx|
∫

Ωx

(
2−

∫
Ωv

f j−1dv

)2

dx, (169)

where |Ωx| denotes the measure of Ωx. Next, we use a standard inequality and the Schwartz inequality to obtain

M2

|Ωx|
≤
∫

Ωx

(
2−

∫
Ωv

f j−1dv

)2

dx ≤ 2

∫
Ωx

[
4 +

(∫
Ωv

f j−1dv

)2
]
dx

≤ 8|Ωx|+
∫

Ωx

[∫
Ωv

(f j−1)2ev
2

dv

∫
Ωv

e−v
2

dv

]
dx

≤ 8|Ωx|+
√
π

∫
Ωx

∫
Ωv

(hj−1)2e−v
2

dvdx = 8|Ωx|+
√
πH, (170)

where we denoted the last integral by H. We consider again inequality (158) from which we remove the nonnegative
term ν∆tB2

/4 to obtain a sufficient condition that is independent of ν. Using (170) in the right-hand side of (165),
we end up with

∆t

4
|Ωx|1/2

(
8|Ωx|+

√
πH
)1/2√

2NA2 ≤ A2
, (171)
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which implies

∆t
[
|Ωx|1/2

(
8|Ωx|+

√
πH
)1/2] ≤ 4√

2N
, (172)

This last condition is substantially similar to (163). However, this derivation implies that having a knowledge of either
M orH at the step j − 1, we have an idea on how to set up the new time-step for the successive iteration.

8.2. Conservation properties for the full approximation of the Vlasov-Poisson system

In the final part of our study, we put together what we have learned in the previous sections, and investigate the
interplay between time stability and conservation properties. We consider the conservation of the mass, which is the
zero-th order moment of the Vlasov distribution function f .

Theorem 8.1 For any k ≥ 1, the solution f of (145)-(146) conserves the total mass, i.e.

d

dt

∫
Ωx×Ωv

f(x, v, t) dxdv = 0. (173)

Proof. After discretization in time, we assume that f j is expanded as

f j(x, v) =

∞∑
n=0

C?,jn (x)ψn(v). (174)

The variational formulation for the coefficients C?,jn is obtained by substituting (174) in (145), multiplying by the test
function ψm and integrating on Ω = Ωx × Ωv

∞∑
n=0

[∫
Ω

C?,jn − C?,j−1
n

∆t
ψnψ

mdxdv

]
+

∞∑
n=0

[∫
Ω

∂

∂x

(
C?,jn + C?,j−1

n

2

)
vψnψ

mdxdv

]

−
∞∑
n=0

[∫
Ω

Ej + Ej−1

2

C?,jn + C?,j−1
n

2

∂ψn
∂v

ψmdxdv

]

+ (−1)kν

∞∑
n=0

[∫
Ω

L̃(k)L(k)

(
C?,jn + C?,j−1

n

2

)
ψnψ

mdxdv

]
= 0. (175)

We separate the integration with respect to x from that with respect to v, obtaining∫
Ωx

C?,jm − C?,j−1
m

∆t
dx+

∞∑
n=0

[∫
Ωx

∂

∂x

(
C?,jn + C?,j−1

n

2

)
dx

∫
Ωv

vψnψ
mdv

]

+
γm
γm+1

∫
Ωx

Ej + Ej−1

2

C?,jm−1 + C?,j−1
m−1

2
dx

−m(m− 1) · · · (m− k + 1)ν

∫
Ωx

C?,jm + C?,j−1
m

2
dx = 0. (176)

We further note that, due to the periodic boundary conditions, the integral in the variable x of the second term is
zero. By adjusting the normalizing coefficients, equation (176) becomes∫

Ωx

Cjn − Cj−1
n

∆t
dx+

√
n+ 1

n

∫
Ωx

Ej + Ej−1

2

Cjn−1 + Cj−1
n−1

2
dx

− n(n− 1) · · · (n− k + 1)ν

∫
Ωx

Cjn + Cj−1
n

2
dx = 0. (177)
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This system is coupled with (146). As a consequence of the orthogonality, we have∫
Ωv

f j dv =

∞∑
n=0

∫
Ωv

CjnHne
−v2 =

√
π Cj0 . (178)

Thus, the discretized Poisson equation takes the form:

∂Ej

∂x
= 1−

√
π Cj0 . (179)

By integrating this last relation with respect to x and using the boundary conditions forEj , we discover that
∫

Ωx
Cj0dx

is constant for all j ≥ 0. This is maintained by the scheme (177), whatever is k ≥ 1.

More in general, conservation of momenta
∫

Ω
vmf jdxdv, j ≥ 0, is guaranteed up to m ≤ k− 1. This corresponds

to the generalization for arbitrary k of the conservation properties that were proven in [5] for k = 3.

9. Conclusions

We investigated the dissipative nature of combined Lenard-Bernstein operators that were previously proposed in
the literature to stabilize the spectral Hermite approximation of the Vlasov equation for the numerical modeling of
collisionless plasmas in the electrostatic limit. We proved that a suitable design of such operators leads to a stabilizing
term that does not change the first lowest-order modes of the spectral expansion. This property makes it possible to
define discrete numerical invariants that can be identified with meaningful physical quantities whose conservation is
a must in numerical simulations, e.g. mass, momentum, and high order velocity moments of the distribution function.
We first carried out our analysis on simplified one-dimensional models and prove the absolute stability in time for
the spectral Hermite representations using basis functions of symmetric or asymmetric type. This problem, in the
asymmetric case, has been unresolved for many years. We proved in addition that, even in presence of dissipation, the
main conservation properties are maintained.

The application of this strategy to the Vlasov-Poisson model allowed us to derive several sufficient conditions for
the stability of the asymmetric numerical formulation that relate the main parameters of the approximation, which
are the number of the espansion terms, the time stepsize, and a scaling coefficient associated to the magnitude of the
artificial dissipation.
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Appendix A

We prove here some inequalities concerning Hermite expansions. In what follows, ϕ is supposed to be a function
such that ϕ =

∑∞
n=0 CnHn, where the coefficients are computed with the help of (13). We first present a particular

version of the Poincaré inequality.

Theorem A.1 If ϕ =
∑∞
n=0 CnHn, then∫

R

ϕ2e−v
2

dv ≤ 1

2

∫
R

(
ϕ′
)2
e−v

2

dv +
√
πC2

0 . (A.1)

The inequality can be generalized to derivatives of order m > 1∫
R

ϕ2e−v
2

dv ≤ 1

2mm!

∫
R

(
ϕ(m)

)2
e−v

2

dv +
√
π

m−1∑
`=0

2` `!C2
` . (A.2)

Proof. The orthogonality of the first derivatives of the Hermite polynomials, equation (12), and the fact that 2n ≥ 2
for n ≥ 1, imply ∫

R

(
ϕ′
)2
e−v

2

dv =

∫
R

( ∞∑
n=1

CnH
′
n

)2
e−v

2

dv =

∞∑
n=1

C2
n

∫
R

(
H ′n
)2
e−v

2

dv

=
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n=1

C2
n 2n

∫
R

H2
ne
−v2 dv ≥ 2
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n=1

C2
n

∫
R

H2
ne
−v2 dv, (A.3)

where all summations start from n = 1 since H0 = 1 and H ′0 = 0. Successively, we add and subtract the weighted
integral of the zeroth-order mode, i.e, C2

0H
2
0 , to the last member of inequality (A.3) and use the expansion of ϕ, so to

have ∫
R

(
ϕ′
)2
e−v

2

dv ≥ 2

∞∑
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C2
n

∫
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H2
ne
−v2 dv − 2C2

0

∫
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H2
0e
−v2 dv

= 2

∫
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ϕ2e−v
2

dv − 2
√
πC2

0 . (A.4)

By reversing this inequality we find that∫
R

ϕ2e−v
2

dv ≤ 1

2

∫
R

(
ϕ′
)2
e−v

2

dv +
√
πC2

0 ,

which is the first inequality (A.1). We generalize the result to derivatives of order m > 1 as follows. Since H(m)
n = 0

for n < m, using formulas (9) and (11), we find∫
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(
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−v2 dv ≥ 2mm!

∞∑
n=m

C2
n

∫
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−v2 dv, (A.5)
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as n!/(n−m)! ≥ m!, when n ≥ m. Now, we add and subtract the weighted integral of the first m modes, i.e.,(
C`H`

)2
, ` = 0, . . . ,m − 1, to the last member of (A.5), and use the normalization of the Hermite polynomials to

find out that ∫
R

(
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n

∫
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√
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2` `!C2
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)
. (A.6)

By reversing this inequality we easily arrive at (A.2).

A further generalization of the previous result is provided by the following statement.

Theorem A.2 (Generalized Poincaré-type inequality) If ϕ =
∑∞
n=0 CnHn, then for m > p one has∫
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(
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Proof. By noting that Hm = H(p+(m−p)) =
(
H(p)

)(m−p)
, a straightforward calculation exploiting the orthogonality

of the derivatives of the Hermite polynomials yields∫
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where we also used the fact that n!/(n− (m− p))! > (m−p)!, for n > 1. We add and subtract the weighted integrals
of C2

`

(
H

(p)
`

)2
for ` = p, . . . , p+ (m− p)− 1, to the last member of (A.8) and we repeat the same argument as above

until we obtain∫
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which is our assertion.

In particular, if ϕ belongs to the space of polynomials of degree at most N , we have 2n ≤ 2N , so that the relations
in (A.3) can be adjusted to obtain the so called inverse inequality∫

R

(
ϕ′
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2

dv ≤ 2N

∫
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ϕ2e−v
2

dv. (A.9)

Another useful inequality is∫
R

v2H2
ne
−v2 dv ≤ 3

4

∫
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2

dv, ∀n ≥ 1. (A.10)
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In order to prove it, we combine (7) and (8) to get

2vHn = H ′n +Hn+1 = 2nHn−1 +Hn+1 ∀n ≥ 1. (A.11)

Finally, we deduce (A.10) from the sequence of relations∫
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where we noted that 2n+ 1 ≤ 2n+ n = 3n. The last equality follows from (12).
The inequality (A.10) is the starting point to show that∫
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4
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which holds for every polynomial ϕ =
∑N
n=1 CnHn with degree less or equal toN and C0 = 0. We argue as follows.

For a given set of values αn, the relation here below is a consequence of the Schwartz inequality(
N∑
n=1

αn

)2
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1 · αn

)2

≤
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12
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With the help of the above inequality, the orthogonality of the Hermite polynomials implies∫
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that actually corresponds to (A.13).
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